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The extent to which gene fusions function as drivers of can-
cer remains a critical open question. Current algorithms do not
sufficiently identify false-positive fusions arising during library
preparation, sequencing, and alignment. Here, we introduce Data-
Enriched Efficient PrEcise STatistical fusion detection (DEEPEST),
an algorithm that uses statistical modeling to minimize false-
positives while increasing the sensitivity of fusion detection. In
9,946 tumor RNA-sequencing datasets from The Cancer Genome
Atlas (TCGA) across 33 tumor types, DEEPEST identifies 31,007
fusions, 30% more than identified by other methods, while
calling 10-fold fewer false-positive fusions in nontransformed
human tissues. We leverage the increased precision of DEEPEST
to discover fundamental cancer biology. Namely, 888 candi-
date oncogenes are identified based on overrepresentation in
DEEPEST calls, and 1,078 previously unreported fusions involv-
ing long intergenic noncoding RNAs, demonstrating a previously
unappreciated prevalence and potential for function. DEEPEST
also reveals a high enrichment for fusions involving oncogenes
in cancers, including ovarian cancer, which has had minimal treat-
ment advances in recent decades, finding that more than 50% of
tumors harbor gene fusions predicted to be oncogenic. Specific
protein domains are enriched in DEEPEST calls, indicating a global
selection for fusion functionality: kinase domains are nearly 2-fold
more enriched in DEEPEST calls than expected by chance, as are
domains involved in (anaerobic) metabolism and DNA binding.
The statistical algorithms, population-level analytic framework,
and the biological conclusions of DEEPEST call for increased atten-
tion to gene fusions as drivers of cancer and for future research
into using fusions for targeted therapy.

gene fusion | cancer genomics | bioinformatics |
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Gene fusions are known to drive some cancers and can be
highly specific and personalized therapeutic targets; some

of the most famous fusions are the BCR–ABL1 fusion in chronic
myelogenous leukemia (CML), the EML4–ALK fusion in non-
small lung cell carcinoma, TMPRSS2–ERG in prostate cancer,
and FGFR3–TACC3 in a variety of cancers including glioblas-
toma multiforme (1–4). Since fusions are generally absent in
healthy tissues, they are among the most clinically relevant events
in cancer to direct targeted therapy and to be used as effective
diagnostic tools in early detection strategies using RNA or pro-
teins; moreover, as they are truly specific to cancer, they have
promising potential as neo-antigens (5–7).

Because of this, clinicians and large sequencing consortia have
made major efforts to identify fusions expressed in tumors via
screening massive cancer sequencing datasets (8–12). However,
these attempts are limited by critical roadblocks: current algo-
rithms suffer from high false-positive (FP) rates and unknown
false-negative (FN) rates. Thus, ad hoc choices have been made
in calling and analyzing fusions including taking the consensus

of multiple algorithms and filtering lists of fusions using manual
approaches (13–15). These approaches lead to what third-party
reviews agree is imprecise fusion discovery and bias against dis-
covering novel oncogenes (15–17). This suboptimal performance
becomes more problematic when fusion detection is deployed on
large cancer sequencing datasets that contain thousands or tens
of thousands of samples. In such scenarios, precise fusion detec-
tion must overcome the problem of multiple hypothesis testing:
each algorithm is testing for fusions thousands of times, a regime
known to introduce FPs. To overcome these problems, the field
has turned to consensus-based approaches, where multiple algo-
rithms are run in parallel (10), and a metacaller allows “voting”
to produce the final list of fusions. This is also unsatisfactory, as
it introduces FNs.

Both shortcomings in the ascertainment of fusions by existing
algorithms and using recurrence alone to assess fusions’ function
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have limited the use of fusions to discover new cancer biology. As
one of many examples, a recent study of more than 400 pancre-
atic cancers found no recurrent gene fusions, raising the question
of whether this is due to high FN rates or whether this means
that fusions are not drivers in the disease (18). Recurrence of
fusions is currently one of the only standards in the field used
to assess the functionality of fusions, but the most frequently
expressed fusions may not be the most carcinogenic (19); on the
other hand, there may still be many undiscovered gene fusions
that drive cancer.

Thus, the critical question “Are gene fusions underappreci-
ated drivers of cancer?” is still unanswered. In this paper, we
first provide an algorithm that has significant advance in preci-
sion for unbiased fusion detection at exon boundaries in mas-
sive genomics datasets. The algorithm, Data-Enriched Efficient
PrEcise STatistical fusion detection (DEEPEST), is a second-
generation fusion algorithm with significant computational and
algorithmic advance over our previously developed MACHETE
(Mismatched Alignment Chimera Tracking Engine) algorithm
(20). A key innovation in DEEPEST is its statistical test of fusion
prevalence across populations, which can identify FPs in a global
unbiased manner.

The precision and efficient implementation of DEEPEST
allowed us to conduct an unbiased screen for expressed fusions
occurring at annotated exon boundaries (based on GRCh38) in
a cohort of 10,521 RNA-sequencing datasets, including 9,946
tumor samples and 575 normal (tumor adjacent) samples, across
the entire 33 tumor types of The Cancer Genome Atlas (TCGA).
Beyond recovery of known fusions, DEEPEST discovers fusions
with potentially important implications in cancer biology that
had not been detected by previous studies.

While frequent recurrence of gene fusions has been consid-
ered a hallmark of a selective event during tumor initiation, and
this recurrence has historically been the only evidence available
to support that a fusion drives a cancer, private or very rare
gene fusions are beginning to be considered potential functional
drivers (21). However, the high FP rates in published algorithms
prevent a statistical analysis of whether reported private or rare
gene fusions exhibit a signature of selection across massive tumor
transcriptome databases, such as TCGA. We have formulated
statistical tests for nonneutral selection of fusion expression by
calculating the expected rates of rarely recurrent gene fusions
and partner genes, enrichment of gene families such as kinase
genes or those curated in Catalog Of Somatic Mutations In Can-
cer (COSMIC) (22), and enrichment for protein domains or
pairs of protein domains present exclusively in fusions. These
analyses reveal a significant signal for selection of gene fusions.
The statistical tests provide a basis for identifying candidate
oncogenes and driver and druggable fusions.

To illustrate one of our findings, a large fraction of ovar-
ian serous cystadenocarcinoma tumors has until now lacked
explanatory drivers beyond nearly universal TP53 mutations and
defects in homologous recombination pathways. Because TP53
mutations create genome instability, a testable hypothesis is
that TP53 mutations permit the development of rare or pri-
vate driver fusions in ovarian cancers, and the fusions have been
missed due to biases in currently available algorithms. We apply
DEEPEST to RNA-sequencing (RNA-Seq) data from bulk
tumors and find that 94.6% of the ovarian tumors we screened
have detectable fusions, half of the ovarian cancer tumors
express gene fusions involving a known COSMIC gene, and 36%
have fusions involving genes in a kinase pathway.

In summary, DEEPEST is an advance in accuracy for fusion
detection in massive RNA-Seq datasets. The algorithm is repro-
ducible, publicly available, and can be easily run in a dockerized
container (Materials and Methods). Its results have important
biological implications: DEEPEST, applied in conjunction with
statistical analysis to the entire TCGA database, reveals a sig-

nature of fusion expression consistent with the existence of
under-appreciated drivers of human cancer, including selection
for rare or private gene fusions with implications from basic
biology to the clinic.

Results
DEEPEST Is a Statistical Algorithm for Gene Fusion Discovery in
Massive Public Databases. We engineered a statistical algorithm,
DEEPEST, to discover and estimate the prevalence of gene
fusions in massive numbers of datasets. Here, we have applied
DEEPEST to ∼10,000 datasets, but in principle, DEEPEST can
be applied to 100,000, 1 million, or more samples. DEEPEST
includes key innovations such as controlling FPs arising from
analysis of massive RNA-Seq datasets for fusion discovery, a
problem conceptually analogous to multiple hypothesis testing
via P values, which cannot be solved by direct application of com-
mon false-discovery rate (FDR)-controlling procedures, which
rely on the assumption of a uniform distribution of P values
under the null hypothesis.

The DEEPEST pipeline contains 2 main computational steps:
1) junction nomination component which is run on a subset of all
samples to be analyzed, called “the discovery set”; and 2) statis-
tical testing of nominated junctions on all analyzed samples, “the
test set.” In this paper, we have used all samples as the discovery
set, but this set could be a fraction of RNA-Seq data if desired.

Step 1 includes running KNIFE (known and novel isoform
explorer) method to detect chimeric junctions (23), defined as
a splicing event between 2 distinct genes, whose exons are on
the same chromosome and within the distance of 1 MB, and
a method based on the MACHETE algorithm (20) to detect
chimeric junctions with partner exons being farther than 1 MB
from each other or on different chromosomes/strands (Fig. 1).
Putative fusions are nominated from the initial database by using
a null statistical model of read-alignment profiles that models the
effect of junction sequence composition and gene abundance in
generating FP fusions (SI Appendix and Materials and Methods).
This step relies on extensive computational engineering, which
restructures the MACHETE pipeline into an efficient repro-
ducible publicly available workflow based on dockerized contain-
ers, using the Common Workflow Language (CWL). Another
advance in DEEPEST over MACHETE is further improve-
ment of sensitivity by including gold standard cancer fusions
in the junction nomination step of MACHETE, which makes
DEEPEST easily portable to clinical settings where clinicians
desire precise identification of a set of known fusions. For this
purpose, we used fusions curated in ChimerDB 3.0 (24).

In Step 2, the statistical refinement step, DEEPEST uses rig-
orous statistical approaches based on orthogonal sequence level
queries via the sequence bloom tree (SBT) (25), a method that
indexes the sequence composition of genomic datasets and can
rapidly query whether specific k-mers appear in the corpus. This
step is modular and can in principle be applied to any fusion dis-
covery algorithm to identify FPs resulting from multiple testing,
a major challenge brought on by running discovery algorithms
on massive datasets. Fusions nominated by the junction nomina-
tion component are subjected to a secondary statistical test: they
are efficiently tested in the discovery set along with an arbitrarily
large number of added samples in the test set, here tens of thou-
sands of samples, by rapid queries using SBT. This step further
decreases the FP identification of fusions beyond MACHETE,
which has been already shown to have better specificity than
any other published algorithm (20). Intuitively, this step checks
whether the prevalence of fusions found by running MACHETE
(or KNIFE) is statistically consistent with the estimated preva-
lence using a string-query based approach (such as SBT). Since
the SBT has perfect sensitivity by searching merely by looking
at fusion-junctional sequences, samples could be positive for
a fusion by SBT yet negative by MACHETE, which requires
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A

B

Fig. 1. Origin and identification of FP from running DEEPEST on thousands of samples. (A) DEEPEST uses all reads, including those censored by other algorithms,
to generate an empirical P value for each candidate fusion. SBTs, together with further statistical modeling, are used to identify FP arising from testing on
multiple samples, some of which are reported by other algorithms (SI Appendix, Fig. S4A). The first black arrow shows the motivation for designing the SBT
step. (B) cDNA or mapping artifacts result in the inclusion of exon–exon junctions from all combinations of exons within a fixed genomic radius of X1 with
all exons in the radius of Y3. Some such exon junctions will include degenerate sequences that cannot be mapped uniquely, and thus DEEPEST blinds itself to
detection of fusions containing such highly degenerate sequences (for example, due to Alu exonization) or with polyA stretches at the 5′ end.

discordant reads to nominate fusions (20). For a fusion to be
called by DEEPEST, it should have an SBT detection frequency
that is statistically consistent with the estimated prevalence by
the junction nomination component and additionally pass statis-
tical filtering such as a test for repetitive sequences near exon
boundaries (Fig. 1 and SI Appendix).

DEEPEST does not require human guidance, is fully auto-
mated, and can be applied to any paired-end RNA-Seq database
by leveraging the massive computational power of cloud plat-
forms. A web-based user-friendly version of the pipeline has
been implemented on the Seven Bridges Cancer Genomics
Cloud (CGC) (26), which allows a user to run the workflow either
by uploading RNA-Seq data or using RNA databases already
available on CGC. (Currently, the average cost of running the
workflow for a single TCGA sample on the cloud is roughly $3.)
Moreover, most parts are portable as they are dockerized and
can be easily exported to many platforms using a description
given by the CWL (27).

DEEPEST Improves Sensitivity and Specificity of Fusion Detection.
We first evaluated DEEPEST FP and FN rates on fusion positive
benchmarking datasets used by third parties to assess the perfor-
mance of 14 state-of-the-art algorithms (28). On each dataset,
DEEPEST has 100% positive-predictive value (PPV), the ratio
of the number of true positive calls to the total number of calls,
higher than all 14 other state-of-the-art algorithms (SI Appendix,
Fig. S1), DEEPEST has a comparable, although numerically
higher, PPV than PRADA (Pipeline for RNA-Sequencing Data
Analysis) (29), which is the next best algorithm. For this analy-
sis, we only applied the first component of DEEPEST, which is
based on MACHETE, as the SBT refinement step utilizes the
statistical power across a large cohort of samples, which is not
the case for simulated datasets.

Because simulations can only model errors with known
sources, it is common for algorithms to perform differently
on real and simulated data; for example, simulated data do
not model reverse transcriptase template switching or chimeras
arising from ligation or PCR artifacts. Thus, in addition to eval-
uating the performance of DEEPEST on simulated data, we
performed a thorough computational study of DEEPEST per-
formance on real data. To evaluate the FP rate of DEEPEST
on real data, we applied it to several hundred normal datasets,
including Genotype-Tissue Expression (GTEx) (30) and TCGA
normal samples. Notably, DEEPEST calls 80% fewer fusions
in GTEx samples than does STAR-Fusion (28) (SI Appendix,
Fig. S2A), an algorithm used in a recent pan-cancer TCGA
analysis (10). In addition, DEEPEST reports fewer fusions (509
fusions) on TCGA normal samples compared with the 3,128
calls in the same samples by TumorFusions (8) (SI Appendix,
Fig. S2B), which is a TCGA fusion list based on PRADA
(29). This provides evidence that, unlike other algorithms,
DEEPEST retains the specificity seen in simulations in real
tissue samples.

We ran DEEPEST on the entire TCGA corpus: 9,946
tumor samples across all 33 tumor types. DEEPEST detects
31,007 fusions across TCGA. Consistent with what is known
about tumor type-specific gene fusion expression, DEEPEST
reports the highest abundance of fusions in sarcoma (SARC),
uterine corpus endometrial carcinoma (UCEC), and esophageal
carcinoma (ESCA) tumor types and the fewest number of
detected fusions in thyroid carcinoma (THCA), testicular
germ cell tumors (TGCT), and uveal melanoma (UVM).
We provide the description of tumor types in SI Appendix,
Fig. S5.

While calling significantly fewer fusions in normal samples,
DEEPEST identifies significantly more fusions in TCGA tumor
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samples compared with 2 most recent surveys of the same sam-
ples (8, 10), the latter is based on STAR-Fusion that is more
sensitive in simulated data. While some fusion algorithms might
exhibit better sensitivity (at the cost of higher FP rates) on
simulated datasets, DEEPEST is more sensitive in real cancer
datasets (SI Appendix, Fig. S2 C and D). When samples shared
between 3 studies are considered, DEEPEST detects much more
fusions (29,820 fusions, compared with 23,624 fusions in ref. 10
and 19,846 fusions by TumorFusions) and substantially fewer
calls in real normal datasets (SI Appendix, Fig. S2 A and B),
suggesting that the modeling used by DEEPEST is a better
fit for real data. DEEPEST-only fusions are enriched in can-
cers known to have high genomic instability (ESCA, ovarian
carcinoma [OV], stomach adenocarcinoma, and SARC) com-
pared with fusions found only by TumorFusions and ref. 10 (SI
Appendix, Fig. S2D). Together, this implies that DEEPEST is
more specific on simulated and real data and identifies more high
confidence fusions on real data.

Because fusions between exons that are closer to each other
than 1 MB in the reference genome and transcribed on the
same strand could be due to local DNA variation or transcrip-
tional or posttranscriptional splicing, for example, into circular
RNA (circRNA) (31), we define an “extreme fusion” to be a
fusion that joins exons that are farther than 1 MB apart, are
on opposite strands, or are on different chromosomes and pro-
file the distribution of DEEPEST-called fusions as a function of
extreme characteristics. Around 24% of fusions have both part-
ner genes transcribed from the same chromosome and strand
and within 1 MB, 22% are on the same chromosome and strand

but separated by at least 1 MB, 23% are strand crosses with
genes being on opposite strands, and 31% are interchromosomal
fusions (Fig. 2A).

DEEPEST finds 1,486 recurrent fusions (512 distinct recurrent
fusions), called in at least 2 tumors within a tumor type (Fig. 2B).
Many gene fusions are detected in diverse cancers, for exam-
ple, MRPS16–CFAP70 and FGFR3–TACC3 (10 cancer types)
(Fig. 2C). Restricted to a single tumor type, most fusions have
low levels of recurrent gene fusions with exceptions of the well-
known TMPRSS2–ERG in prostate adenocarcinoma (PRAD)
(182 samples, 36.3% of tumor samples), PML–RARA in acute
myeloid leukemia (LAML) (14 samples, 8% of tumor samples),
and DHRS2–GSTM4 in bladder urothelial carcinoma (BLCA)
(Fig. 2D).

Around 41% of DEEPEST’s 31,007 fusions (12,196 fusions)
had not been detected by previous fusion studies on TCGA
(SI Appendix, Fig. S2C). Far fewer fusions are found only by
one of the other algorithms (4,402 fusions in TumorFusions and
5,860 fusions in ref. 10) (SI Appendix, Fig. S2C). We further
investigated DEEPEST-only fusions and queried them through
FusionHub portal (https://fusionhub.persistent.co.in/) to see if
they are present in any other fusion database and found that
9,272 distinct fusions (i.e., gene pairs) were not present in
any other fusion database (Dataset S1). Included in this list
are 157 previously unreported recurrent fusions (Dataset S1
and SI Appendix, Fig. S3), including a recurrent fusion for
PRAD involving SCHLAP1, a long noncoding RNA (LncRNA)
known to have driving oncogenic activities in the prostate
cancer (32).

A

B

C

D

Fig. 2. The landscape of detected fusions. (A) The relative position of the partner exons in the detected fusions. (B) The number of recurrent fusions for
each tumor type. (C) The most recurrent fusion for each tumor type. (D) Fusions with the most diverse tumor types.
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Statistical Analysis of Fusion Prevalence in Large Data Queries
Improves Precision of Calls. The SBT refinement step is a critical
innovation of the DEEPEST pipeline and substantially improved
its specificity by removing fusion calls likely to be FPs. Such
fusions passed the first component of DEEPEST due to mul-
tiple hypothesis testing but were flagged by the statistical SBT
refinement step (SI Appendix, Fig. S4A).

The main power of the refinement step is it is agnostic to
gene name or ontology (such as pseudogenes, paralogs, synony-
mous genes, and duplicated genes) used by conventional filters,
and which can lead to true positives being removed from lists
(e.g., RUNX1–RUNX1T1). Furthermore, most fusions (89%)
removed during the SBT refinement step would have passed such
filters (SI Appendix, Fig. S4B).

To further evaluate the performance of the SBT-based refine-
ment component, we extracted 2 groups of fusions from the
fusions called by the junction nomination component: 1) likely
FPs (LFPs) that are fusions with SBT hits in the GTEx sam-
ples and 2) likely true positives (LTPs) that contain fusions
shared between the DEEPEST first component, ref. 10, and
TumorFusions. Note that LFP fusions are defined on the basis of
GTEx data, whereas the SBT refinement step does not “touch”
GTEx data, meaning that the LFP fusion set can be used as a
test set for the specificity of the SBT refinement step. A fusion
is removed by the SBT refinement step if its 2-sided binomial
P value is less than 0.05, an arbitrary and conventional statis-
tical threshold. To evaluate the precision of the SBT step, we
treated each 2-sided P value as a continuous measure and strat-
ified the P values for LFP and LTP sets (SI Appendix, Fig. S4C).
The P values of LFP fusions (with GTEx SBT hits) are signifi-
cantly smaller than those of LTP fusions (Mann–Whitney U test,
P < 2.2e−16), implying that the majority of them are filtered out
by the SBT statistical refinement step. On the other hand, LTPs
possess higher 2-sided P values, which indicates that they would
pass the refinement step. In summary, while the statistical refine-
ment step improves DEEPEST calls, the approach outlined is
also a general methodology for increasing the precision of RNA
variant calls on massive datasets.

DEEPEST Identifies LncRNAs Are Prevalent in Fusions. A major cate-
gory of fusions identified by DEEPEST are fusions that involve
LncRNAs, which have been overlooked by other methods due to
bioinformatic or heuristic filters. Fusions involving well-studied
(and thus named) LncRNAs have been appreciated to have
oncogenic potential (21, 33, 34). Due to their functions in reg-
ulating cellular homeostasis, fusions that involve LncRNA have
the potential to contribute or drive oncogenic phenotypes (34,
35). Genome-wide pan-cancer analyses have previously not pro-
filed those with the LINC annotation. We found that fusions
involving LncRNAs (as annotated by the Ensembl database
release 89) are abundant in tumors (10% of fusion calls involve
LncRNAs and 20% of tumors are found to have at least one
fusion involving a LncRNA) (Dataset S4). A large fraction
of LncRNA fusions (∼ 30% or 994 fusions) involves LINC
RNAs, which have been overlooked by previous methods due to
their biases and heuristic filters for discarding “uncharacterized”
genes.

Prevalence of Fusions Found by DEEPEST Is Correlated with Genome
Instability. As another computational test of whether DEEPEST
maintains high precision in a variety of solid tumors that have
more complex cytogenetics than LAML, we tested whether
the abundance of detected fusions per cancer is correlated
with the mutation rate of TP53, which is an orthogonal mea-
sure of a tumor’s genome instability (36). The average number
of fusions per sample identified by DEEPEST has a higher
(and significant) correlation with TP53 mutation rate across
tumor types compared with ref. 10 and TumorFusions (Pearson

correlation: 0.497, 0.38, and 0.31, respectively; Spearman’s cor-
relation: 0.637, 0.596, and 0.54, respectively; Fig. 3A). We
found that there is a significant correlation between fusion
abundance and TP53 mutation frequency as 2 orthogonal mea-
sures of genomic instability. DEEPEST calls more fusions in
tumors with high TP53 mutation rates in less cytogenetically
complex tumors, while retaining tight control of FPs in other
samples.

DEEPEST Identifies a Positive Selection on Fusions Containing Known
Oncogenes. Gene fusions could arise from random reassort-
ment of DNA sequences due to deficiencies in the structural
integrity of DNA in tumors with no functional impact, or
they can be driving events, such as for BCR–ABL1 in chronic
myelogenous leukemia (1). In our first global computational
tests of whether fusions are passengers or drivers, we tested
whether DEEPEST-called fusions are enriched in genes known
to play oncogenic roles. Since functional gene ontologies are
not used by DEEPEST, this analysis provides an independent
test of whether fusions are enriched for genes in known can-
cer pathways. For each tumor type, we tested for enrichment
of the 719 genes present in the COSMIC Cancer Gene Census
database (22).

Under the null hypothesis of random pairing of genes in
fusions, we compared the observed to expected fraction of sam-
ples containing at least one fusion with a COSMIC gene by
conditioning on the total number of fusions detected for a tumor
type, where tumor types with more detected fusions are expected
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Fig. 3. Association of fusions with genomic instability. (A) DEEPEST fusions
are significantly correlated with the TP53 mutation frequency. (B) Detected
fusions are highly enriched in genes cataloged by COSMIC. For all tumor
types, except for uterine carcinosarcoma (UCS), UCEC, pheochromocy-
toma and paraganglioma (PCPG), UVM, TGCT, kidney chromophobe (KICH),
thymoma (THYM), and adrenocortical carcinoma (ACC), the observed frac-
tion significantly exceeds the expected fraction based on the null hypothesis
of random pairing (Bonferroni-corrected FDR < 0.05).
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to have a higher ratio of samples with COSMIC fusions (Materi-
als and Methods). The largest enrichment for COSMIC genes is
in PRAD (3-fold change vs expected fraction: P < 1e−6), THCA
(4.9-fold change vs expected fraction; P < 1e−6), and LAML (5.6-
fold change vs expected fraction; P < 1e−6) (Fig. 3B and Dataset
S3). This is expected because the most frequent gene fusions in
PRAD involve the ETS family of transcription factors (which are
cataloged as COSMIC genes), THCA tumors are highly enriched
for kinase fusions, and LAML is a disease where fusions, includ-
ing known drivers, have been intensively studied, and therefore
their partners are annotated as COSMIC genes. Most tumor
types lack prevalent recurrent gene fusions, and thus there is no
a priori bias that fusions will be enriched for COSMIC genes in
other tumor types.

In PRAD, SARC, ESCA, UCS, and OV, the fraction of sam-
ples with fusions containing a COSMIC partner exceeds 50%, a
rate much greater than expected by chance, the null fraction of
samples with COSMIC fusions is 45% for SARC and less than
40% for other tumor types (Fig. 3B and Dataset S3). In more
than 90.7% (Bonferroni-corrected FDR < 0.05) of the tumor
samples we studied, COSMIC genes are statistically enriched
above the background rate. Together this is strong evidence for
a positive selection pressure on gene fusions in various tumor
types, including cancers such as OV, where fusions are currently
not considered to play a driving role.

Statistical Analysis of Rare Fusions Shows a Selection in More Than
11% of TCGA Tumors. Fusion recurrence is considered to be evi-
dence that a fusion plays a driving role. This argument grew out
of work focused on point mutations in cancer genomes (37).
However, the total number of possible gene fusions (the sam-
ple space) greatly exceeds the sample space of point mutations.
The number of potential gene fusions scales quadratically with
the number of genes in the genome (in the samples we ana-
lyzed, ∼ 22, 000 genes were expressed). This means that there
are up to 625 million potential gene fusions, more than an order
of magnitude greater than the number of possible point muta-
tions that is bounded by the number of protein-coding bases in
the transcribed genome (∼ 30× 106). Therefore, fusions could
be strongly selected for in tumors even without observing high
levels of recurrence. If a moderate fraction of human genes could
function as oncogenes when participating in fusions, rare fusion
expression is expected in a population-level survey, even one as
large as the TCGA cohort.

To account for this effect, we formalized a statistical test for
whether the prevalence of rare recurrent fusions fits a model
of neutral selection by a null distribution where fusion expres-
sion arises by chance, the theory of which was worked out in
ref. 38 (Materials and Methods). We mapped the probability of
observing recurrent gene fusions to a familiar problem in statis-
tics: if k balls (corresponding to the number of observed fusions)
are thrown into n boxes (corresponding to the total number of
possible gene pairs), how many boxes are expected to have c
or more balls? In other words, given the number of detected
fusions, how many of them are expected to be called for at least
c samples?

The most prevalent fusions expected under neutral selection
would be observed only 2 times, and we would expect to observe
only 5 such fusions (Fig. 4), making this and thousands of other
fusions highly unlikely to be observed under the null hypothesis.
Controlling for multiple hypothesis testing, this analysis recov-
ers several known recurrent fusions including TMPRSS2–ERG,
PML–RARA, FGFR3–TACC3, and DHRS2–GSTM4 (4, 39, 40).

This analysis reveals evidence that recurrent fusions are
selected for in diverse tumors; RPS6KB1–VMP1, a fusion
between the ribosomal protein kinase (41) and a vacuolar pro-
tein (VMP1) present in 8 tumor types, is the most prevalent
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Fig. 4. Statistical analysis of recurrent fusions. Observed number of recur-
rent fusions that occur more than x times is significantly higher than the
expectation and the upper 99% CI expected in the null (Benjamini–Yekutieli
FDR control at level 0.01).

detected gene fusion, after TMPRSS2–ERG, across the entire
TCGA cohort and supports findings by previous studies that
these fusions have a driving role (42, 43) (Fig. 2C). Globally, 14%
of the fusions (1,486) found by DEEPEST are observed at higher
rates than expected by chance (P < 1e−6); more than 11.9% of
tumors (1,181) have recurrent fusions (Fig. 4 and Dataset S1).

Recurrently Fused Genes Distinguish Tumors from Nonneoplastic Tis-
sue and Are Fused in More Than 30% of TCGA Tumors. If many
genes could serve as oncogenic fusion partners, fusions under
selection could be private, yet partners could be much more
prevalent than would be expected by chance. To test whether
3′ or 5′ partner genes are overrepresented in fusions found by
DEEPEST in the TCGA cohort, we used the “balls in boxes”
null distribution above, where boxes correspond to all possible
3′ (respectively 5′) partners (expressed genes) and balls corre-
spond to the total number of fusion pairs (i.e., 31,007 fusions)
detected across all samples. We map the coincidence of c balls
in one box to c distinct 5′ (resp. 3′) partner genes being paired
with one 3′ (resp. 5′) partner and call genes with statistically
significant numbers of 5′ and 3′ partners “significantly fused”
(Fig. 5 A and B).

The number of significantly fused 5′ and 3′ partners is large:
DEEPEST reports 864 recurrent 5′ partners and 378 recurrent
3′ partners, both having P values of <1e−5 (Fig. 5B), when
only 110 genes with more than 6 partners would be expected
by chance (Dataset S2); 190 and 48 genes are found in fusions
as significantly fused 5′ and 3′ partner genes with more than 12
partners, respectively, when no such genes would be expected
by chance. The most significant 5′ partner gene is FRS2, a
docking protein that is critical in FGF receptor signaling (44);
FRS2 fusions are detected in 52 tumors or in 0.5% of TCGA
cases. Other highly significant recurrent partners include PVT1,
ERBB2 (HER2), known oncogenes, and tumor suppressors such
as MDM2, which negatively regulates TP53 (45) and UVRAG
(46) (Fig. 5C). The most promiscuous 3′ partner genes are
CPM, a gene regulating innate immune development (39 part-
ners), and the gene C1QTNF3–AMACR (61 partners) (Fig. 5C).
Other genes with the highest numbers of distinct 5′ partners
include CDK12, a cyclin-dependent kinase emerging as a tar-
get in cancer therapy (47), and well-known tumor suppressors
such as RAD51B (48). We also found 31 noncoding RNAs as
significantly fused genes. PVT1, noncoding RNAs of unknown
function: AC134511.1, AC025165.3, and LINC00511 have the
most 3′ partners; and BCAR4, PVT1, and noncoding RNAs of
unknown function: AP005135.1 and AC020637.1 have the most
5′ partners (Dataset S2). While some of these noncoding RNAs
such as PVT1 (49), LINC00511 (50), and BCAR4 (51) have
been shown to act as oncogenes, our findings call for further
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investigation into the potential driving roles of other significantly
fused noncoding RNAs.

While the list of significantly fused genes includes well-known
cancer genes as described above, only 15.5% of them (193 genes)
are currently annotated as COSMIC genes, i.e., 888 significantly
fused genes are previously unreported candidate oncogenes,
calling for further functional investigation of these genes. This
is an enrichment for COSMIC annotation but is not exhaustive:
significantly fused genes are a large class of potential oncogenes
and tumor suppressors that function through gene rearrange-
ment rather than gain or loss of function through point mutation.
To functionally annotate significantly fused partner genes, we
carried out gene ontology (GO) enrichment analysis and found
the highest enrichment (Binomial test, Bonferroni-corrected
FDR < 0.05) in cancer pathways such as androgen signaling
pathway, ERBB signaling pathway, and ephrin receptor signaling
pathway (Fig. 5D and Dataset S2).

To further support the role of significantly fused genes in can-
cer, we evaluated the rate that such genes are detected in TCGA
tumor and GTEx samples as a function of 1) the number of
partners and 2) the nature of the rearrangement underlying the
fusion: “extreme” events that bring together 2 exons that are
farther than 1 MB apart, on opposite strands, or on different
chromosomes in the reference, and all other events are “nonex-
treme” (Fig. 5E). Nonextreme events could arise through small
scale genomic duplication or transcriptional readthrough cou-
pled to “back-splicing” to generate circRNA (20, 23). Globally,
DEEPEST detects fusions including significantly fused genes
(>10 partners) at a much higher rate in TCGA tumors (7,050
fusions in ∼ 34% of samples) than in GTEx controls (29 such
fusions in ∼ 9% of samples), despite GTEx samples being
sequenced at an average depth of 50 million reads, roughly
similar depth to tumor samples.

The deviation between the fraction of such fusions in TCGA
versus GTEx increases with the number of partners of the sig-
nificantly fused gene such that among those with at least 23
partners, only 2 fusions are detected in GTEx (0.7% of samples),
while 1,845 such fusions are detected in 1,202 TCGA tumors

(12.1% of samples). Notably, the 2 fusions detected in GTEx are
PVT1–MYC and FRS2–CPSF6, both fusions are “nonextreme,”
splicing detected between 2 genes transcribed in the same orien-
tation with promoters < 200 kB from each other, events which
could arise from somatic or germline variation or transcriptional
readthrough.

Fusions involving significantly fused genes in TCGA and
GTEx samples have distinguishing structural features. The large
majority of fusions in tumors arise from extreme rearrangements
(SI Appendix, Fig. S6) regardless of the number of partners a
significantly fused gene contains. More than 90% of fusions in
TCGA that involve significantly fused genes with at least 23 part-
ners are extreme, whereas no such GTEx fusions are extreme (SI
Appendix, Fig. S6). This again implies a tumor-specific selection
for extreme fusions, which increase the complexity of partners
available to significantly fused genes. Together, analysis of rare
recurrent gene fusions and recurrent 3′ and 5′ partners identify
hundreds of candidate oncogenes, which constitute a significant
fraction of gene fusions.

DEEPEST finds higher enrichment of significantly fused genes
in more tumors compared with other TCGA fusions lists (SI
Appendix, Fig. S7), calling significantly fused genes with >10
partners in ∼ 50%; and with >20 partners in ∼ 70% more sam-
ples compared with recent studies (>10 partners: DEEPEST:
3,705; ref. 10: 2,570; TumorFusions: 2,787 samples; >20 part-
ners: DEEPEST: 1,479; ref. 10: 823; TumorFusions: 958 sam-
ples). While 7.6% of DEEPEST fusions have a gene with >20
partners, only 4.8% and 5.6% of fusions in ref. 10 and Tumor-
Fusions, respectively, have such genes. FRS2 is found to have
the highest number of partners in all 3 lists; however, DEEPEST
identifies 65 3′ partners, which is larger than other 2 lists: 41 and
52 partners by ref. 10 and TumorFusions, respectively.

Lung Adenocarcinoma and Serous OV Have High Statistical Enrich-
ment for Kinase Fusions. The most common genetic lesions in OV
and lung adenocarcinoma (LUAD) is TP53 mutation, present
in 85.8% of OV and 52.12% of LUAD cases (cBioPortal;
retrieved 2018 Nov 19) (52), although there is a debate in the
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literature that this prevalence is an underestimate. However,
TP53 mutations are not sufficient to cause cancers (53). In OV,
the explanatory driving events are as yet unknown (54). We
tested the hypothesis that genome instability in OV could gener-
ate fusions responsible for driving some fraction of these cancers,
which might have been missed because of shortcomings in fusion
detection sensitivity. The rate of kinase fusions is statistically sig-
nificantly higher than would be expected by chance, supporting
a selection for and driving role of kinase fusions in these tumor
types. DEEPEST predicts that 37% of ovarian tumors (Binomial
test, P < 1e−5) and 25% of lung adenocarcinoma tumors (Bino-
mial test, P < 1e−5) contain kinase fusions (Fig. 6A and Dataset
S3), a rate higher than what would be expected based on the null
assumption of random pairing of genes in fusions. Other cancers
with high enrichment of kinase fusions include: THCA (13.3%
of samples; P < 1e−6), head and neck squamous cell carcinoma
(HNSC) (16% of samples; P < 1e−6), and cervical squamous cell
carcinoma and endocervical adenocarcinoma (CESC) (15.7% of
samples; P = 7.7e−5) (Fig. 6A and Dataset S3).

Positive Selection for Fusions to Rewire the Cancer Proteome. To
test if there is selection on the protein domains included in
fusions, we compared the rate at which each protein domain
occurs in the reference proteome to its prevalence in the
DEEPEST-called fusion proteome. This analysis identified a
set of 120 domains that are statistically enriched in fusion
proteins. The most highly enriched domains are AT hook,
a DNA binding motif found for example in the SWISNF
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Fig. 6. Protein domain analysis. (A) Analysis of the fraction of samples con-
taining kinase fusions reveals that THCA, CHOL, LUAD, OV, and many other
tumor types have significant high enrichment of kinase fusions in addi-
tion of high overall rates. (B) GO analysis identifies enrichment of cellular
metabolism and DNA organization in the protein domains enriched in all
fusion transcripts.

complex, NUP84-NUP100, a domain present in some nucle-
oporins, and Per1 a domain involved in lipid remodeling,
all present at 15 times higher frequency than the refer-
ence proteome (P << 1e−10) (Dataset S4). Tyrosine kinase
domains are 1.8-fold enriched in fusions compared with the
reference proteome (P << 1e−10). To functionally character-
ize the 120 domains enriched in fusions proteins, we per-
formed GO enrichment analysis using the dcGOR R pack-
age (55) and identified overrepresented biological processes
among these domains (Binomial test, Benjamini–Yekutieli-
corrected FDR < 0.05): the enriched domains were involved in
(anaerobic) electron transport, chromosome condensation and
organization, and DNA metabolism or organization (Fig. 6B
and Dataset S4).

To find the set of domain pairs enriched in fusions, we com-
pared the observed frequency of each domain pair against the
null probability of random pairing between domains; 226 domain
pairs are enriched above background (Bonferroni-corrected
FDR < 0.05), among the highest enriched domain pairs are
NHR2–RUNT, RUNT–TAFH, and RUNT–zf-MYND in the in-
frame fusion protein RUNX1–RUNX1T1 detected in LAML
samples (Dataset S4).

Because enrichment of protein domain pairs could be sensi-
tive to how we model the null distribution, we formulated a test
for selection of fusion proteins containing 2 in-frame domains
where the “most pessimistic” null distribution for our problem
can be computed in closed form. This analysis considers only
fusions whose 5′ and 3′ parent genes contain only one anno-
tated domain. Out of 3,388 fusions with 1-domain parental genes,
681 fusions with 2 domains were observed, whereas only 282
were expected by chance under a closed-form, conservative null
distribution (P < 1e−5) (SI Appendix), strong evidence for selec-
tion of such fusions that couple intact domains in the fusion
protein.

In addition to the above enrichment, 17% of all DEEPEST
fusions result in proteins that have protein domain pairs that do
not exist in the reference proteome. These pairs include well-
known driving fusions such as the domain pairs Pkinase Tyr–
TACC and I-set–TACC in FGFR3–TACC3 but also include
9,500 other domain pairs not found in the reference pro-
teome, which implies their potential for tumor-specific function
(Dataset S4).

Discussion
Some of the first oncogenes were discovered with statistical mod-
eling that linked inherited mutations and cancer risk (56). The
advent of high-throughput sequencing has promised the discov-
ery of novel oncogenes, which can inform basic biology and
provide therapeutic targets or biomarkers (57, 58). However,
unbiased methodologies for the discovery of novel oncogenic
gene fusions have been only partially successful.

DEEPEST is a unified, reproducible statistical algorithm to
detect gene fusions in large-scale RNA-Seq datasets without
human-guided filtering. DEEPEST has significantly lower FP
rates than other algorithms. The unguided DEEPEST filters
have not sacrificed detection of known true positives. Further,
DEEPEST assigns a statistical score that can be used to prioritize
fusions on the basis of statistical support, rather than the abso-
lute read counts supporting the fusion. Such a statistical score
is unavailable in other algorithms but of potential scientific and
clinical utility as the discovery rate and the tradeoff between sen-
sitivity and specificity of DEEPEST can be tuned by modifying
the threshold on scoring.

Although many likely driving and druggable gene fusions
have been identified by high-throughput sequencing, studies
reporting them have either a nontested or nontrivial FP rate
even using heuristic or ontological filters, making those fusions
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unreliable for clinical use. Similar problems also limit the sen-
sitivity in screens of massive datasets to discover fusions, novel
oncogenes, or signatures of evolutionary advantage for rare or
private gene fusions. To illustrate DEEPEST’s potential clini-
cal contribution, we integrated DEEPEST-detected fusions with
a recent curated precision oncology knowledge base (OncoKB)
(59), with drugs stratified by evidence that they interact with spe-
cific proteins and found druggable fusions in 327 tumors (3.3%)
(SI Appendix, Fig. S8). However, the current list of druggable
fusions is biased toward genes that have classically been consid-
ered oncogenes, and mainly kinases. By increasing the precision
of fusion calls, the analysis in this paper opens the door for
further functional and clinical studies to better identify drug
targets and repurpose already validated drugs that could target
fusions.

The DEEPEST algorithm improves detection of gene fusions
that have been missed by other algorithms’ lists of “high con-
fidence” gene fusions. Analysis of these gene fusions uncovers
fundamental cancer biology. First, we find evidence that gene
fusions are more prevalent than previously thought in a variety of
tumors including high grade serous ovarian cancers. Second, our
computational analysis suggests the hypothesis that gene fusions
involving kinases and perhaps other genes are a contributing
driver of these cancers. Further, fusions in ovarian and most
tumor types are under selection to include gene families that are
known to drive cancers, such as kinases and genes annotated as
COSMIC.

DEEPEST allows for rigorous and unbiased quantification of
gene fusions at annotated exonic boundaries and for tests of
whether partners in gene fusions that may be rare or private
are present at greater frequencies than would be expected due
to chance. The results in this paper establish statistical evidence
that gene fusions and the partner genes involved in fusions are
under a much greater selective pressure than previously appreci-
ated: under a highly stringent definition of an enriched partner,
more than 10 to 20% of all TCGA tumors profiled harbor a gene
fusion including a gene under selection by tumors to be involved
in gene fusions that require large scale genomic rearrangement.
Future work profiling normal cohorts will distinguish whether
fusions including these genes that found in GTEx arise due to
variation at the DNA sequence, transcriptional, or posttranscrip-
tional levels. Significantly, this discovery required comprehensive
statistical analysis of rare gene fusions, using large numbers of
samples to increase power to detect selection for gene fusion
expression by tumors.

Together, the results in this paper lead to a model that
fusions may be lesions like point mutations, present across
tumors rather than tumor-defining, and suggests that by focus-
ing on one tumor type to detect recurrence, and by relying on
classical metrics for recurrence and selection, some important
cancer biology is lost. Further, the computational evidence in this
paper suggests rare fusions are drivers of a substantial fraction
of tumors.

Materials and Methods
An Enhanced Statistical Fusion Detection Framework for Large-Scale Genomics.
We used the discovery set to generate a list of fusions passing MACHETE
statistical bar (Fig. 1). We then queried all datasets for any fusions found in
any discovery set (Fig. 1) and estimated the incidence of each fusion with
SBTs (25). SBTs are data structures developed to quickly query many files
of data of short-read sequences from RNA-Seq data (and other data) for a
particular sequence. These structures build on the concept of Bloom filters.
SI Appendix contains technical details about the methodology used. Next,
we used standard binomial CIs to test for consistency of the rate that fusions
were present in the samples used in MACHETE discovery step and the rate
that they were found in the SBT. Fusion sequences that were more prevalent
across the entire dataset that is statistically compatible with the predicted
prevalence from the discovery set were excluded from the final list of fusions
(Fig. 1).

For intuition on why this step is important, consider the scheme in Fig. 1:
a candidate exon-exon junction sequence that could be generated from
sequencing error results in a read that has been generated by a single
gene being more similar in sequence to a read that spans a fusion between
2 homologous genes. There is a difference between MACHETE and SBT,
which will lead to both FPs and FNs by the SBT step: SBTs will not con-
sider the alignment profile of all reads aligning to a junction (as MACHETE
does), including reads with errors or evidence of other artifacts, as such
reads that would have mismatches with the query sequence and are con-
sequently censored by the SBT (these reads would be FN by the SBT). The
same censoring leads the SBT, like other algorithms, to have a high FP rate
due to: 1) FP intrinsic to the Bloom filters used in the SBT; 2) even if the
bloom filter itself has a null FP rate, SBT may falsely identify a putative
fusion due to events such as described above (and depicted in Fig. 1). As
another example of a FP from reason 2 above, if a single artifact (e.g., a lig-
ation artifact between 2 highly expressed genes) in a single sample passes
MACHETE statistical threshold in the discovery step, it will be included as
a query sequence for the SBT step, and the SBT could detect it at a high
frequency because the statistical models used by MACHETE are not used by
the SBT (Fig. 1). Testing for the consistency of the rate of each sequence
being detected in the discovery set with its prevalence estimated by SBT
controls for the multiple testing bias leading to increased FPs from the
SBT (Fig. 1).

We built SBT index files for all TCGA samples across various TCGA projects
using SBT default parameters (k-mer index size 20 and a minimum count
of 3 for adding a k-mer to a bloom filter). The 40mer flanking the fusion
junction (20 nucleotides on the 5′ side and 20 nucleotides on the 3′ side) is
retrieved for each fusion nominated by the junction nomination component
and each TCGA tumor type is queried for the fasta file containing all 40mers
for the fusions called by the first component. For the sensitivity threshold,
which determines the required fraction of k-mers in the query sequence that
should be found for a hit, we used a more stringent value of 0.9 (instead of
default value 0.8) to improve the specificity of DEEPEST. After querying, the
detection frequencies of each fusion junction by the first component and
SBT are compared, and if they are statistically consistent, the fusion could
pass the SBT refinement step; otherwise, it would be discarded. Technical
details of the statistical framework, postprocessing of DEEPEST output files,
and SBT query step are provided in SI Appendix.

Null Probability for Recurrent Fusions. For g genes, there are g(g− 1) pos-
sible fusions. If n fusions are detected by DEEPEST across all tumors, let X
be the number of recurrent fusions. In our analysis, there are g = 22, 000
different gene names in DEEPEST report files and we have reported n =

31, 007 fusions. The probability that no fusion is recurrent can be com-
puted using the Poisson approximation for the birthday coincidences prob-
lem with λ= n(n−1)

2g(g−1) , Prob(X = 0)≈ e−λ = 0.451. As shown in Fig. 4, the
expected value of the number of recurrent fusions (with a frequency of at
least 2) is 5.

Calculations for the Expected Number of Recurrent 5′ and 3′ Partners. As a
test of the likelihood of observing our results, we use a statistical model
of the probability of observing as many or more recurrent 5′ and 3′ part-
ners under the assumption that the genes in each fusion pair are randomly
chosen from all expressed genes. To do this, we use the generalized birth-
day model from ref. 38. First, we consider all g = 22, 000 expressed genes
as boxes, which represent each potential 5′ partner gene. Next, we con-
sider the distribution of the number of distinct 3′ partners for each gene
if 3′ partner genes, which we take to be numbered balls, were thrown at
random into boxes. When the first ball arrives in the box j1, this represents
that the first observed fusion on our list has gene j1 on its 5′ side. At the
end of this process, we have thrown n = 31, 007 fusions (balls) into g boxes.
For a given c, the number of balls occupying a single box, we can calculate
the probability of having Xg,c boxes with at least c balls. The distribution

of Xg,c has been shown to be a Poisson distribution Po( tc
c! ) (ref. 38, theorem

2.2), where t = n
g1−1/c . We perform the following calculations to find signif-

icant recurrent 5′ gene partners. For each c, we find the expected number
and the 99% upper CI of the number of boxes (5′ genes) that have at least
c balls (distinct 3′ partners) according to the null distribution. For statisti-
cal analysis, a significance level of 0.01 was considered. Moreover, since we
are testing multiple hypotheses in our analysis, we adopt the Benjamini–
Hochberg–Yekutieli FDR control procedure (60) and correct the significance
value for each c. For each c, we construct the CI at level (1 − corrected sig-
nificance level) (Fig. 5B). Similarly, we can find the expectation and upper CI
(after Benjamini–Hochberg–Yekutieli correction) for each number of recur-
rent 3′ genes that have at least c 5′ gene partners (Fig. 5B). We provide
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a table of P values for each observation of the number of recurrent genes
with at least c partners in Fig. 5 by the formula 1− F(#3′(5′) partners with
at least c 5′ (3′) partners), where F(·) is the cumulative distribution function
of the Poisson distribution Po( tc

c! ) (Dataset S2).

Software Availability. DEEPEST workflow, in which all needed softwares are
preinstalled, and all custom scripts used for analysis of fusions are avail-
able at ref. 27. Also, a publicly available online tool with web interface is
available on the Cancer Genomics Cloud at ref. 26.
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